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ABSTRACT

A sample bank has been established at the Oregon 
Institute of Science and Medicine to which 5,000 volunteers 
are periodically contributing urine specimens and medical 
histories. Samples are stored at -80 ºC (degrees Celsius). As 
groups of samples accumulate from persons with similar 
subsequent medical events, samples are quantitatively 
analyzed by magnetic resonance mass spectrometry (MRMS). 
MRMS permits the simultaneous quantitative measurement 
of more than 800 molecular urinary constituents of human 
metabolic origin. Profiles for aging, sex, heart disease, breast 
cancer, and prostate cancer have been found and analyzed 
for diagnostic usefulness. There is a 99.99% probability that 
a profile predictive of a subsequent cardiac event has been 
identified, and a 94% and 97% chance, respectively, that 
profiles predictive of breast or prostate cancer have been 
identified. Such profiles could be made available at very low 
cost and have great potential for preventive, diagnostic, and 
therapeutic medicine. In our set of patients with diagnosed 
cardiac disease, a diagnostic coefficient greater than a 
specified threshold was present in 19 of 21 subjects who 
experienced a cardiac event 4 to 30 months after contributing 
a urine specimen, but present in only 2 of 21 age and sex-
matched controls. Sixteen of these 21 had experienced 
no cardiac event prior to providing the urine sample. In a 
randomly selected set of 200 undiagnosed healthy subjects 
(100 men and 100 women), the cardiac event diagnostic 
coefficient was above the threshold in 28%. About 27% of 
the U.S. population in this age group is actuarially expected 
to die from heart disease.

Introduction

In this paper, we introduce the concept and utility of 
quantitatively measuring metabolic profiles of samples from 
a human urine bank. The approach described here holds 
remarkable promise as a means of providing early indication 
of disease, making it ideally compatible with precision 
or personalized medicine. To facilitate this approach, we 
also introduce the concept of magnetic resonance mass 
spectrometry (MRMS) for rapid metabolic profiling. MRMS 
combines the ultra-high performance of Fourier transform 
ion cyclotron resonance (FTICR) mass spectrometry with the 
advantages of matrix assisted laser desorption ionization 
(MALDI) for rapid, straightforward profiling analysis.

The MRMS method utilizes the extremely high resolution 
and high mass measurement accuracy of FTICR mass 
spectrometry.1 This high resolution allows thousands of 

independent chemical substances to be detected and 
quantified simultaneously for a single sample without the 
requirement for prior separation. This provides the ability 
to discern the extensive metabolite information generated 
from the ionization of urine samples, while providing a 
unique speed advantage. Moreover, the molecular formulae 
for most of these signals can be confirmed by accurate mass 
measurement, providing great specificity.

Metabolic Profiling with Magnetic Resonance Mass 
Spectrometry and a Human Urine Bank: Profiles for Aging, 
Sex, Heart Disease, Breast Cancer and Prostate Cancer
Noah Robinson, Ph.D.
Matthew Robinson, Ph.D.
Arthur Robinson, Ph.D. 

Figure 1. Actual and Potentially Enhanced U.S. Survival. The 
red line in (a) and (b) is the U.S. survival curve. Physiologically 
calibrated MRMS of urine could prevent much of this 
suffering and early death as illustrated in (b) by enabling 
early diagnosis and preventive treatment.
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MRMS can be configured with any of the various and 
routine ionization methods such as electrospray (ESI)2 and 
MALDI.3,4 MALDI was chosen as the ionization method in 
this work for its simplicity of operation and nonsusceptibility 
to sample carryover, making it attractive as a potential 
diagnostic tool. Additionally, MALDI is fast and less vulnerable 
to the deleterious effects of salt concentration on ionization 
efficiency.

These characteristics of the MALDI-MRMS combination 
permit metabolic profiling with greater numbers of substances 
than other methods with a single rapid analysis rather than 
analyses combined with chromatographic separations or 
other preparative procedures, which require more time and 
added expense.

In the work presented here, a single 7-minute MALDI-
MRMS run reproducibly resolves more than 100,000 different 
chemical constituents from a 5 μl human urine sample in 
positive ion mode. Negative ion mode will further increase 
this inventory of measurable substances. Also, as the inventory 
of metabolic profiles grows, this method can be refined for 
analytical turnaround in much less than 7 minutes.

With sufficient research and very high quality human 
calibration samples, a true cornucopia of information about 
virtually all important health conditions that affect human 
metabolism should be detectable by means of a single 
analysis with this one analytical technique.

We also carried out substantial experimentation with ESI 
as an alternative to MALDI for this work. In our experience, ESI 
provided more complete ionization; however, it introduces 
unacceptable sample-introduction contamination and also 
adsorptive sample substance losses that make it less ideal for 
this particular application.

Future research and development will make this analytical 
methodology even more quantitative and practical. The 
research reported herein, however, demonstrates that MALDI-
MRMS already offers the potential for extraordinary diagnostic 
advances in its present form.

Quantitative metabolic profiling originated in a 10-
year project between 1968 and 1978 to test the hypothesis 
that a single analysis of the amounts of large numbers of 
metabolites in human body fluids and tissues, followed by 
computerized pattern recognition, would be a useful means 
for the simultaneous quantitative measurement of many 
aspects of human health.5 

Using mostly chromatographic measurement of between 
50 and 150 substances, in primarily human urine with a 
few experiments on breath and tissues, this project verified 
this hypothesis by discovering unique profiles for multiple 
sclerosis, Duchenne dystrophy, Huntington’s disease, breast 
cancer, diet, fasting, sex, diurnal variation, and chemical birth 
control. With diet control, profiles sufficient to fingerprint 
single person biochemical individuality were observed, and 
it was discovered that urinary substances are monomodally, 
bimodally, and even trimodally distributed in the human 
population at birth. In addition, profiles characteristic of 
physiological age were found in fruit flies, mice, and men.5-8

With the objective of very low cost mass screening of people 

to increase their quality and length of life as illustrated in Figure 
1, this 1970s research had three problematic limitations. First, 
the analytical procedures were slow and expensive. Second, 
the disease work was carried out on people who were already 
overtly ill, which introduces systematic variables other than 
the disease itself. Third, it involved primarily single samples 
from individuals. Multiple samples taken over an extended 
period of time would have allowed individuals to serve as 
their own controls and markedly enhanced the precision of 
the metabolic profiles.

Advances in mass spectrometry, especially MRMS as 
utilized herein, now make possible very fast and low-cost 
simultaneous measurement of thousands of substances, which 
solves the first problem. So, a sample bank has been created 
at the Oregon Institute of Science and Medicine to solve the 
second and third problems, with urine samples and medical 
data being collected periodically from 5,000 volunteers and 
the urine stored at -80 ºC. The initial results from this project 
are reported herein.

This research is conceptually different from the vast 

Figure 2. Potential Use of Diagnostic Coefficients. The 
empirical determination of the positions, designated X, of 
single individuals on these illustrative linear axes by means 
of metabolic profiling available to everyone at low cost 
would facilitate lifestyle and medical intervention on their 
behalf. Research with such profiles on groups of individuals 
would help to guide those interventions.
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worldwide effort begun by biochemists a century ago to 
ultimately and thoroughly understand human metabolism 
and, along the way, to identify biochemical markers or, now, 
groups of markers that carry information useful for specific 
medical purposes.9,10 

We seek instead to measure large numbers of metabolites 
in a single analysis, gaining usually small amounts of empirical 
correlating information from each individual metabolite—
the summations of these correlations being used to 
simultaneously detect and measure many different health 
profiles that are diagnostically useful. This technique depends 
upon the subtle biochemical interactions through which 
metabolites throughout the metabolism pick up information 
about one another.

This permits one simple empirical analytical procedure, 
optimized for those substances that are easy and inexpensive 
to measure, to gather a wide variety of useful quantitative 
information characteristic of various aspects of human health.

In each profile, the information from the measured 
substances in a urine sample is combined mathematically into 
one number, designated the “diagnostic coefficient,” for each 
condition of interest, since most uses of this information are 
one-dimensional as shown in Figure 2.

Placing an individual quantitatively on a life-remaining, 
physiological aging axis would allow him to watch and 
manipulate his progress along that axis as a function of 
diet and other adjustable lifestyles, and placing groups of 
individuals on this axis would allow objective research on 
such parameters.

Placing individuals on a probability-of-illness axis would 
be useful in efforts to combat the probability of specific 
illnesses rather than the illnesses themselves, and, if illness 
is present, placing an individual on a severity-of-illness axis 
would be useful in monitoring and optimizing therapy.

In general, placing an individual on a “quality of life” axis 
can include any parameter of importance to the individual—
even athletic performance, sleep pattern, or just sense of well-
being.

To be sure, these are not new goals. The point here is that 
a single inexpensive quantitative metabolic profiling tool now 
has the potential to do all four without the need for solving 
the underlying biochemistry of the condition of interest or 
using targeted procedures, the expense of which often limits 
their use.

Optimization of human nutrition motivated the origin of 
this concept. In 1968, Linus Pauling and Arthur Robinson were 
searching for ways in which to determine optimum nutritional 
intakes of essential nutrients in individuals and populations. 
They needed to make graphs of health as a function of intake 
of vitamins and other nutritional substances, but lacked 
a quantitative means of measuring biochemical health. 
Quantitative metabolic profiling was devised as a possible 
solution.

While biochemistry is expected to ultimately provide 
learned answers to these questions, the goal was then and 
is now to provide empirical information at very low cost 
to improve the lives of people living now and prior to the 

ultimate maturation of biochemical knowledge.
It is unacceptable that the human survival curve includes, 

as shown in Figure 1, a large percentage of people who 
experience suffering and death at ages far shorter than the 
intrinsic human life span. Analytical technology now provides 
the ability to significantly improve this. Technological advance 
in mass spectrometry makes possible not only eventual 
detailed understanding of human metabolism, but also 
empirical methods to markedly and significantly reduce this 
early suffering and death. We describe, herein, progress in 
research on such a method.

Methods and Resources

Urine Bank
A total of 8,500 interested volunteers in southern and 

central Oregon were located by direct mail. After expected 
initial losses, 5,000 volunteers now actively participate in this 
project, with an attrition and necessary replacement rate of 
about 5% per year.

Periodic urine samples and current self-reported medical 
information are collected from the volunteers. Each sampling 

Figure 3. Age Distribution of 5,000 Contributors to OISM 
Urine Sample Bank. Men (a) and women (b) from southern 
and central Oregon, U.S., volunteer to contribute urine 
samples and medical information to the urine bank.



78 Journal of American Physicians and Surgeons Volume 22 Number 3 Fall 2017

consists of two approximately 1.5 ml (1,500 μl) samples of 
urine placed in 1.8 ml Nunc Cryotube vials.

In the initial stages of the project, these samples were 
mailed in ambient temperature USPS approved mailers to the 
urine bank, where they were cataloged and stored at -80 ºC. 
Currently, we are collecting both mailed samples and door-to-
door collected samples that are frozen immediately.

There are partial losses of some substances during 
the ambient temperature mailing, but, with thousands of 
substances from which to choose, these losses are moderate. 
Door-to-door collection is about twice as expensive. Mailing is 
also more compatible with our goal of very low cost, enabling 
as many people as possible to afford and benefit from this 
technology.

Self-selection has led to an older age distribution of 
our volunteers as shown in Figure 3, so they have expected 
disease incidences about three times greater than a linear age 
distribution of ordinary Americans.

The urine bank storage is in military grade -80 ºC freezers 
with three-fold power backup. The two samples permit 
storage in two locations.

Mass Spectrometry
Mass spectral analysis was performed in an unmodified 

Bruker 7T-SolariX XR ICR FTMS tuned to the 100 to 1,000 m/z 
mass range. The MALDI (matrix assisted laser desorption 
ionization) source was operated at 50% laser power. The MALDI 
plate was a Protea Biosciences Redichip, pin type with no 
chemical matrix.

Urine sample dilutions were determined by 
spectrophotometry over 350-360 nanometers in a Molecular 
Devices SpectraMax M2 spectrophotometer, with the 
concentrations then normalized by adding between 0 and 50 
μl of VWR Aristar Ultra pure water to a 5 μl urine sample. This 
adjusted the urine concentrations approximately with one 
another. A total of 4 μl of each diluted sample was carefully 
applied to the MALDI plate in order to completely cover one 
circular pin array, and dried before analysis.

A total of 200 FTICR transients were averaged together, with 
each 1.0-second transient generated by a 500-shot pulsed laser 
directed onto a unique position on the plate as selected by 
means of Bruker automation. The sample cycle time was seven 
minutes.

Ions from the 500 laser shots accumulate in the MALDI 
source and enter the ICR cell as one group, the measurement 
of which produces one transient analytical image. The average 
of 200 such transients is converted into the mass spectrum by 
Fourier transform.

Sample introduction for these analyses has unique 
requirements. With 200 transients and an estimated 1 million 
molecules accommodated by the ICR cell, an estimated 200 
million molecules varying in amounts over three orders of 
magnitude can be measured. These are composed of more than 
100,000 molecular components, with about 30,000 making up 
most of the total. So, most of the individual chemical species 
are present in very small amounts.

Therefore, the analytical system must be very clean. The use 

of laser desorption ionization overcomes contamination of the 
sample during introduction, but the MALDI chemical matrices 
commercially available to us were unacceptably contaminated 
with impurities. So, we used the pin type plates, which were 
sufficiently clean.

Similarly, ordinary desalting procedures are sources 
of sample contamination and sample loss at these low 
concentrations of urinary constituents, so desalting was 
omitted, which also simplifies the procedure.

MRMS technology is a preferred choice for this application 
because of its evident superior capabilities as illustrated herein 
and because of marked improvements in MRMS technology 
that can be expected in the future.

The quantitative noise in the measurements reported 
herein is manageable. The high sample quality and especially 
the large number of experimental parameters utilized have 
partially overcome noise in these experiments. Suppression 
of noise by future improvements in MRMS technology and 
the maturation of the OISM urine sample bank over time will 
provide even more remarkable profiling capability.

Subjects Used in the Analyses
For the age and sex analyses, 100 men and 100 women 

spanning the age range and distribution shown in Figure 3 
were drawn from volunteers who reported good health. 

For the volunteers who reported a diagnosis of breast or 
prostate cancer, we analyzed samples given before the cancer 
was otherwise diagnosed—all compared with individually 
age and sex-matched controls. 

The cardiac event testing was conducted twice. The first 
trial was with 11 cardiac-event subjects and 11 age and sex-
matched controls, with five of the subjects having experienced 
heart problems prior to providing the urine sample and six 
having not experienced a prior heart problem. After this was 
done, we received reports from 10 additional volunteers (or 
their survivors) that they had experienced their first known 
cardiac event. We then analyzed the samples provided by the 
16 volunteers who had not reported cardiac symptoms prior 
to providing a urine sample. 

Of the 21 subjects with cardiac events in the two trials, 
“heart attacks” were reported for 14 subjects, “congestive 
heart failure” for 4, and “heart failure” for 3.

Calculations
Statistical tests of the discovery and diagnostic reliability 

of the metabolic profiles reported here were computed in two 
different and complementary ways. Both of these ways use 
the Wilcoxon method of nonparametric statistics.11 

Much analytical data, by custom and culture, is tested by 
methods that assume the measurements to be distributed 
as Gaussian. If the measured values are determined by 
underlying phenomena that depend upon a significant 
number of similarly sized, largely independent variables, 
then the distribution function (range and relative magnitude 
of the values within the range) of the measurements tends 
to be Gaussian. For example, human intelligence is found 
to be Gaussian distributed. If, however, the data is not 



79Journal of American Physicians and Surgeons Volume 22 Number 3 Fall 2017

distributed as a Gaussian or another defined functional form 
or if it is not known to be so distributed, then rigor requires 
that “nonparametric” statistics, which do not depend on 
the distribution function shape, be used. Medical research, 
including that reported herein, often involves too few 
measurements to determine the distribution function shapes, 
so it must be evaluated nonparametrically. Also, in the case 
of urinary metabolic profiling, research has shown that the 
measured values are often not distributed as Gaussian.5

For the first test (of profile presence), the raw mass 
spectrometric data herein were tested for the existence of 
metabolic profiles for sex, age, prostate cancer, breast cancer, 
and heart disease, with no data manipulation at all other 
than normalization to remove systematic variation caused by 
variable in vivo dilution, primarily from variable water intake 
by the subjects. Thus, the peak areas of all substances in each 
urine sample were divided by a sample-dependent dilution 
constant derived by four iterations of normalizing,12 using the 
values of a large number of the peaks in the sample.

The probabilities of non-correlation (1.0 minus the 
probabilities of correlation) were then nonparametrically 
calculated for each mass spectral peak found in 80% of the 
spectra of the test subjects and matched controls. Control 
matching was primarily for sex and age, as appropriate. These 
probabilities were arranged in order of increasing magnitude 
and plotted as cumulative distribution functions as shown in 
Figures 4 and 6.

So, for example, if the non-correlation probabilities for 
peaks in two compared groups for 20 peaks are equal to or 
lower than P=.001, that point is plotted; if 35 peak areas lie at 
or below P=.002, that point is plotted; and so on for all P value 
divisions in the comparison. These are the blue lines on the 
graphs. For 5,000 peaks, if there were no correlation and the 
data were random, 5 peaks would be expected at or below 
P=0.001; 10 at or below P=.002; and so on, leading to a linear 
plot as shown in red on the graphs. In this example, therefore, 
5 peaks are expected at P=.001 and 20 are found, an excess 
of 15. This does not reveal which are the random 5 and which 
are the 15 from a systematic profile, but the excess reveals a 
profile.

The red lines shown are theoretically straight, but deviate 
from linearity with finite data sets and experimental noise. 
So, we calculated 20 red lines from the measured spectra for 
40 control subjects arranged randomly in 20 different paired 
groups of 20 subjects each. The Gaussian standard deviation, 
σ, at P = 0.1 for this series of experiments (Gaussian statistics 
being appropriate for this purpose), was computed. Deviation 
of the blue lines from the red lines was thus measured in units 
of σ, providing values of 5.5 σ, 2.2 σ, and 0.4 σ for the cardiac 
event, breast cancer, and prostate cancer measurements, 
respectively. So, there is an estimated greater than 99.99% 
probability that a predictive cardiac event profile is present, 
a greater than 95% probability that a predictive breast cancer 
profile is present (as was discovered for overt breast cancer in 
the 1970s), and no detected predictive prostate profile at low 
probabilities of non-correlation, although the overall graph 
reveals an apparent weaker profile for prostate cancer.

For the second test (of profile usefulness), the experimental 
values were used in a simple diagnostic procedure to test the 
diagnostic potential of these profiles. This procedure does not 
depend on the cumulative distribution functions, but it is to 
be expected that the relative strength of these cumulative 
distributions would correspond to relative diagnostic power, 
as it does.

Using the protocol we developed for these experiments, 
a great many chemical species with unique masses are 
detectable in these urine samples, with more than 100,000 
appearing in most of the samples and about 30,000 appearing 
as unique, reliably quantifiable peaks. On average, each 
unique substance in these spectra appears at eight specific 
different masses due to combinations during analysis with 
other urinary substances and isotope effects, wherein various 
elemental isotopic variations appear frequently enough to be 
detected.

A recent review of urine composition13 lists 2,700 unique 
chemical substances that have been detected in human urine 
in the mass range of our experiments, with 917 of those listed 
believed to be endogenous products of human metabolism. 
These could include both human and bacterial products and 
byproducts. We tentatively identified 2,300 of these in our 
spectra based upon their masses being within 2.5 parts per 
million of the exact theoretical masses in the 2,700. We verified 
837 of the 917 by means of observed masses of multiple 
adduct forms and isotopes, and found that about 700 met the 
criteria of appearing in 80% of the samples in each profiling 
experiment. We added all detected amounts of different mass 
forms of each of the 837 together to obtain the total amount 
of each unique substance used in the diagnostic calculations.

The molecular identities of these 837 substances have 
been tentatively determined by exact mass and are listed 
with the Internet version of this publication. This mass 
measurement provides elemental formulas, not structural 
formulas. The molecular identities have been enhanced by 
structural information regarding urine composition compiled 
from other sources,13 but it is to be expected that some of 
these assigned molecular identities may be incorrect.

We found many substances that correlate with the human 
conditions we measured in these experiments that are not 
reported13 to be products of human metabolism. These are 
widely abundant in food, air, water, and other sources, and 
metabolic information is apparently impressed on them 
while they are inside human tissues. We decided to limit 
these diagnostic calculations to those designated as human 
products,13 so about 700 human metabolites that passed 
our 80% criteria in each experiment are used herein in each 
diagnostic evaluation. On average, the amounts of about eight 
adducts and isotopes in the spectra were added together to 
obtain the value for each of the 700.

We have found that the logarithmic ratios of amounts of 
metabolites contain better diagnostic information than the 
absolute values, which is in accord with the general behavior of 
chemical systems. So, we calculated about 500,000 parameters 
by dividing all of the 700 amounts of metabolites with each other 
and then computing the logarithms. These 500,000 parameters 
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were ordered by nonparametric correlation probability, and 
the most correlating unique 500 parameters were used for 
diagnosis. These 500 (1,000 including the inverses) included 
between 120 and 150 different metabolites, depending upon 
individual disease, and no single metabolite was present in more 
than 5% of the 500 selected. Although there were far more than 
500 parameters with high correlation probabilities, we found 
that inclusion of more than 500 had little marginal diagnostic 
value herein. Use of ratios in this computation also removes any 
remaining concentration-normalizing insufficiencies.

In the case of the predictive cardiac event profile, the 500 
parameters included 147 human metabolic urinary substances 
in the first trial, 146 in the second, and 148 in the combined 
diagnostic power evaluation shown in Figure 9.

While sophisticated pattern recognition techniques are 
available, we have used a simplified procedure herein, in which 
diagnostic coefficients5 are calculated.

Diagnostic coefficients RA are defined as:

where Ai is the normalized value of the ith parameter in the 
mass spectrum, A, that is being classified. Yi and Oi are the 
average values of the corresponding parameters in the two 
groups being compared, n is the number of parameters in the 
calculation, and ri is a weight constant that was set equal to 1 
for all parameters in the calculations herein for simplicity in 
evaluating these results.

By this procedure, each parameter (logarithmic metabolite 
ratio) is averaged for the test group and an appropriate control 
group. Each subject in the disease analyses was paired with 
an age and sex-matched control, and diagnostic coefficients 
for each of the pair were computed. The pair is excluded from 
determination of the averages of the parameters to which it 
is compared, the averages being thus recomputed for each 
comparison. This exclusion prevents the pair from biasing 
the averages in its own favor. The average coefficient for the 
two is computed and the quantitative diagnostic coefficient 
deviation toward the experimental or control group averages 
for each determined. These deviations are plotted on a 
diagnostic coefficient graph as shown in Figures 7 and 8.

To simplify comparisons in Figures 7 and 8, these values 
were normalized to a range between -50 for the most extreme 
average of the control subjects and +50 for the most extreme 
average of the subjects manifesting the condition of interest.

Figure 7 shows bar graphs, which illustrate the diagnostic 
separations achieved. From the combined diagnostic 
coefficient order of the trial and control groups shown in 
these graphs, the nonparametric probability that a separation 
into two groups by metabolic profiling has been achieved 
is computed. For the two cardiac event analyses, the breast 
cancer analysis, and the prostate cancer analysis, these 
probabilities are 99.5%, 99.8%, 94%, and 97%, respectively. 
While the breast cancer separation appears better than the 

prostate cancer pattern, it has a lower probability. The reason 
for this is that fewer pairs of diseased and non-diseased 
subjects were used in the breast cancer analysis. 

These diagnostic coefficients can then be ordered and 
plotted in diagnostic power graphs as illustrated for cardiac 
event prediction in Figure 9. The coefficients are placed in 
numerical order for the subjects being evaluated, and this 
linear distribution is divided at all possible division points to 
create the diagnostic power graph. This graphing method was 
developed5 to account for the fact that diagnostic profiles do 
not contain within themselves essential information about 
how they will be used, such as the tolerances for false positives 
and false negatives, which depend on anticipated medical or 
other actions. 

Since cardiac events very often lead to unexpected and 
immediate death (9 of 21 or 43% of the urine bank volunteers 
suffering cardiac events in these two analyses died from the 
event), more false positives would be tolerable for this disease 
than, for example, prostate cancer. Figure 9 shows that 19 
out of 21 cardiac event-prone subjects were identified with 
only two apparent false positives among the normal controls. 
If fewer false negatives are desired the increased number of 
false positives is evident from the graph. For random data and 
no diagnostic power, the data would follow the theoretical red 
line on the graph. The “diagnostic power” of 82% in Figure 9 
represents the percentage area between the random red line 
and a perfect correlation of a point in the origin.

Results and Discussion

Sex and Age
The cumulative distribution function of nonparametric 

probabilities of non-correlation with sex (Figure 4a) shows a 
very strong profile, affecting more than 30% of the peaks. There 
are 1,000 peaks strongly correlating and 3,000 reasonably 
correlating, reflecting the pervasive metabolic differences 
between men and women. There were 100 men and 100 
women with no known health problems in this evaluation. 
When the individual correlation probabilities of a large number 
of substances are calculated, these probabilities are linearly 
distributed between 0 and 1 if there is no overall correlation. For 
example, if there are 1,000 peaks, the sum of the probabilities 
of non-correlation at or below 0.01 will be about 10, below 0.1 
about 100, below 0.2 about 200, and so on.

If, however, some of the peaks are correlated, the low 
probabilities are raised in number, which raises the low 
probability part of the line. So, for example, the sex probability 
distribution here is composed of an approximately linear 
distribution of about 5,000 non-correlated peaks and about 
3,000 correlated peaks.

Statistical detection of correlation increases with the 
number of measurements of each substance, so there may 
well be far more than 3,000 peaks actually correlated, but the 
additional weaker correlations will not be evident unless more 
individual urines are analyzed.

The cumulative distribution function for aging was 
calculated for these same men and women. The diagnostic 
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coefficients for aging computed for this profile were calculated 
using half of the male subjects to establish a profile for aging 
(group 1) and the other half used to evaluate the profile (group 
2). This revealed a diagnostic power for group 2 of 76% shown 
in Figure 5.

This diagnostic power is below 100% partly because the 
separations are by chronological age, while the measurements 
are of physiological age. As more data on medical histories and 
lifespan accumulates over time, the metabolic profile will give 
an increasingly accurate estimate of a subject’s position on an 
axis of physiological aging and thus of years remaining in the 
individual’s lifespan.

Also, since the statistical years of life remaining to these 
younger and older men overlap, a complete separation and 
diagnostic power of 100% is not possible. This has been 
discussed more completely elsewhere.8

Thus, the urine bank and profiling analysis will eventually 
reveal the statistically estimated years of life remaining for these 
volunteers. Moreover, since all samples are stored at -80 ºC and 
analytical technology will continue to improve, more accurate 
measurements of more substances will become available to 
refine this profile.

The aging profile herein shows about 30% of the peaks 
correlate with age. This is consistent with the approximately 
30% of substances found to be age correlated in the 1970s5,8 
with far fewer substances.

During the original 1970s research wherein age-dependent 
metabolic profiles were first observed, most metabolites were 
not identifiable by the chromatographic techniques utilized. 
Among 20 that were identified were aspartic acid, glutathione, 
cystine, alpha-amino butyric acid, and glutamic acid, which 
increased with age, and histidine, asparagine+glutamine, 
serine, glycine, threonine, alpha-amino adipic acid, alanine, 
lysine, valine, ethanolamine, and taurine, which decreased with 
age.8 All 16 of these deviated with age in the same directions 
in the MRMS analyses reported herein as they did in the 1970s 
research. The other 4 substances identified in the 1970s did 
not deviate in the same directions, but these were present in 
very small amounts and therefore subject to high experimental 
error.

These results illustrate a characteristic of quantitative 
metabolic profiling in that the urinary amounts of thousands of 
compounds are useful for profiling, even though they would not 
necessarily be expected to be especially biochemically relevant. 
Biochemical interconnectedness in human metabolism 
induces weak correlations into thousands of molecular species, 
and these can be statistically summed to provide practical 
diagnostic value.

For example, it was found in the 1970s12 that urinary amines 

Figure 4. Cumulative Distribution Function of Nonparametric 
Probability of Non-correlation, P, of MRMS-measured Urinary 
Peaks with Sex and Age. The peaks for sex used age-matched 
controls, and those for age used sex-matched controls. 
The red line is the theoretical plot for non-correlated 
measurements. 

Figure 5. Diagnostic Power Graph. This shows the accuracy 
of classifying men as “older” (above chronological age 50) or 
“younger” (below age 50) by metabolic profiling. Note that 
the measurement is of physiological age.
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and amino acids were highly correlated with sex, and we have 
replicated this finding here, even though specific biochemical 
links of these substances to human sex are generally unknown.

The physiological age profile should reflect the probable 
years of life remaining as a result of physiological deterioration 
and increased susceptibility to disease, especially to life-
threatening illnesses. Quantitative metabolic profiling of 
physiological age should eventually permit useful experiments 

Figure 6. Cumulative Distribution Functions of Nonparametric 
Probability of Non-correlation of MRMS-measured Substances 
in Urine Provided Pre-diagnosis: (a) the first analysis of cardiac 
events; (b) breast cancer; (c) prostate cancer 

Figure 7. Diagnostic Separations of Subjects vs. Age and 
Sex-matched Controls: (a) cardiac events in first analysis; 
(b) cardiac events in second analysis; (c) breast cancer; (d) 
prostate cancer. Probability of correlation is 99.5%, 99.8%, 
94%, and 97%, respectively.
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to be performed on populations and on individuals with 
respect to the effects of diet, exercise, chemical supplements, 
and other lifestyle-adjustable parameters.

Cardiac Events and Breast and Prostate Cancer Analyses
The cumulative distribution functions of nonparametric 

non-correlation probabilities for cardiac events, breast cancer, 
and prostate cancer were determined as shown in Figure 6. 
The urine samples were provided by the volunteers and stored 
in the urine bank 4 to 30 months before these illnesses were 
symptomatically experienced by the volunteers and medically 
diagnosed, with the exception that 5 volunteers of the 11 in 
the first cardiac-event group had also experienced earlier heart 
health problems.

At P = 0.1 and based on our experimentally determined σ 
for the red line, the blue lines obtained from our analyses differ 
from the red lines by 5.5 σ for the first cardiac event profile, 2.2 
σ for the breast cancer profile, and 0.4 σ for the prostate cancer 
profile.

There is, therefore, a greater than 99.99% probability that a 
cardiac event profile has been detected and a greater than 95% 
probability that a breast cancer profile has been detected.

There are fewer unique cumulative probabilities plotted 
for breast cancer as a result of the smaller number of subjects 
diagnosed with breast cancer, and therefore it exhibits a more 
broken blue line.

The relatively strong cardiac event profile might be 
anticipated because a deteriorating heart would be expected 
to have especially widespread consequences in metabolic 
processes.

In order to confirm the first cardiac event profile, we 
performed a second analysis with 16 volunteer subjects, none 
of whom were known to have ever experienced a heart problem 
prior to providing the analyzed urine sample, but all of whom 
suffered a cardiac event in the 4 to 30-month period following 
deposit of the sample. The result is shown in Figure 7b.

In this analysis, an improved version of the Bruker FTICR-MS 
with greater sensitivity was utilized; the mass range was 75 to 
1,000; 1.5 second transients were collected; and 300 transients 
were averaged.

Cardiac Event Prediction
The cardiac event samples analyzed herein were given 

by the volunteers before they suffered symptoms and were 
diagnosed with cardiac disease (with the exception of 5 in 
the first cardiac event analysis).

A correlation was qualitatively observed wherein the 
cardiac event diagnostic coefficient apparently became 
larger as the time of the cardiac event approached, but the 
small size of these sample sets prevents corroboration of this 
observation with statistical reliability.

Of the 21 cardiac event subjects in Figure 7, the time 
between the analyzed sample and the cardiac event was 
between 4 and 11 months for 11 subjects, 14 and 22 months 
for 9 subjects, and 30 for one subject.

Are these profiles strong enough for predictive and 
possibly preventive use?

To evaluate this, diagnostic coefficients were calculated 
for the disease victims and their individual sex and age-
matched controls as shown in Figures 7a and 7b. The cross-
hatched red bars are those who suffered cardiac events after 
providing the samples and the blue bars are controls.

The numerical distributions in these disease diagnostic 
coefficient values shown in Figure 7 provide nonparametric 
probabilities that these measured profiles are actually 
diagnostic of the diseases prior to the later symptoms and 
medical diagnoses. These probabilities are 99.5% and 99.8% 
for the two separate cardiac event profile analyses.

The cardiac event prediction profile, discovered in the 
first set of subjects and confirmed in the second, is especially 
remarkable.

Diagnostic coefficients were also calculated for the 
cardiac event profile of the 100 men and 100 women whose 
samples were used in the age and sex analyses, as shown in 
Figure 8.

Those among the 200 with a positive heart disease 
diagnostic coefficient comprise 28% of the group, while 
CDC (Centers for Disease Control and Prevention) statistics 
indicate that about 27% of individuals in this age distribution 
are expected to eventually die from heart disease.

The reliability of this percentage-of-population finding 
of 28% is enhanced as compared with individual diagnosis, 
since analytical profiling experimental noise is averaged 
over 200 analyses in the result.

These results demonstrate that there is a metabolic profile 
present in the urine of people who have not yet experienced 
cardiac events, which is likely to be of value in warning such 
people of this vulnerability.

The diagnostic power graph in Figure 9 created from the 
ordered diagnostic coefficients of the 21 cardiac event victims 
and 21 age and sex-matched controls in the two cardiac event 
analyses combined (with averaged coefficients from these 
two  analyses used for the 11 people in both  analyses) has a 

Figure 8. Cardiac Event Diagnostic Coefficients for 200 Men and 
Women with No Known Health Problems. It is shown that 28% 
of these people have positive diagnostic coefficients. About 
27% of the U.S. population in the age distribution of the 200 are 
actuarially expected to eventually die from heart disease.
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diagnostic power of 82%.
If warned by MRMS profiling, these people could have 

sought medical help, made changes in their lives in hopes 
of diminishing their cardiac event probability, and taken 
precautions, such as equipping themselves or their associates 
with portable defibrillators.

Thus, we see in Figure 9 that, if this profile had been used 
to inform those whose urine was analyzed, 19 of the 21 who 
were at risk could have been warned if the cutoff criteria had 
been set to a level that warned only 2 who had not suffered an 
event. Given the prevalence of heart disease, it is probable that 
several of the “control” subjects in this study will also eventually 
experience cardiac events, so the diagnostic power may actually 
be higher than 82%. This diagnostic power will improve when 
constructed with many more samples and subjects.

Figure 9 demonstrates the value of the graphical diagnostic 
power evaluation5 because the results of a quantitative 
profiling study do not contain information about how the 
profile will be used. Since cardiac events very often lead to 
unexpected and immediate death, more false positives would 
be tolerable for this disease than, for example, prostate cancer.

The metabolic profiles for these three conditions (cardiac 
event, breast cancer, and prostate cancer) appeared before 
symptoms and medical diagnosis and are unique. Each of the 
three profiles, when applied to the profiles of subjects with the 
other two diagnoses, showed no diagnostic value whatever.

Conclusions

It has been shown that magnetic resonance mass 
spectrometry (MRMS), when combined with the OISM human 
urine bank for calibration, has substantial potential as a method 
for the empirical quantitative metabolic profiling of human 
health. Instrumental improvements and the maturation, 
extension, and expansion of the urine bank, both of which will 

occur over time, can further improve this capability.
Advances in mass spectrometry have revolutionized 

biochemistry, which is gradually leading to increasingly 
extensive biochemical models and reasoned medical advances.

In the meantime, the empirical use of high-resolution mass 
spectrometry and careful sampling as illustrated here can make 
important contributions to the quality and length of human life.

Imagine, for example, a sample kit containing a suitable 
disposable laser desorption target on which the user places 
a drop of urine, allows it to dry, and then mails the target 
USPS First Class in an ordinary envelope to a central mass 
spectrometry laboratory. The user could receive by Internet a 
coded confidential report with valuable health information for a 
total cost of perhaps $5, including kit, postage, and automated 
analysis, within a few days. Also, receiving the analysis itself, the 
user could submit his analysis to a statistical evaluation Internet 
provider of his choice.

In this way, mass spectrometric technology could make 
valuable information for preventive, diagnostic, and therapeutic 
medicine immediately available to all people, regardless of their 
social and economic circumstances.
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